§ 179.100-7 Materials.

(a) *Steel plate:* Steel plate materials used to fabricate tank shell and manway nozzle must comply with one of the following specifications with the indicated minimum tensile strength and elongation in the welded condition. The maximum allowable carbon content must be 0.31 percent when the individual specification allows carbon greater than this amount. The plates may be clad with other approved materials.

Specifications	Minimum tensile strength (p.s.i.) welded condition ¹	Minimum elongation in 2 inches (percent) welded condition (longitudinal)
AAR TC 128, Gr. B	81,000	19
ASTM A 302 ² , Gr. B	80,000	20
ASTM A 516 ²	70,000	20
ASTM A 537 ² , Class 1	70,000	23

¹Maximum stresses to be used in calculations.

²These specifications are incorporated by reference (IBR, see §171.7 of this subchapter).

(b) *Aluminum alloy plate:* Aluminum alloy plate material used to fabricate tank shell and manway nozzle must be suitable for fusion welding and must comply with one of the following specifications (IBR, see §171.7 of this subchapter) with its indicated minimum tensile strength and elongation in the welded condition. * * *

Specifications	Minimum tensile strength (p.s.i.) 0 temper, welded condition ^{3,4}	Minimum elongation in 2 inches (percent) 0 temper, welded condition (longitudinal)
ASTM B 209, Alloy 5052 ¹	25,000	18
ASTM B 209, Alloy 5083 ²	38,000	16
ASTM B 209, Alloy 5086 ¹	35,000	14
ASTM B 209, Alloy 5154 ¹	30,000	18
ASTM B 209, Alloy 5254 ¹	30,000	18
ASTM B 209, Alloy 5454 ¹	31,000	18
ASTM B 209, Alloy 5652 ¹	25,000	18

¹For fabrication, the parent plate material may be 0, H112, or H32 temper, but design calculations must be based on minimum tensile strength shown.

²0 temper only.

³Weld filler metal 5556 must not be used.

⁴Maximum stress to be used in calculations.

(c) *High alloy steel plate.* (1) High alloy steel plate must conform to the following specifications:

	Minimum tensile strength (p.s.	Minimum elongation in 2 inches
Specifications	i.) welded condition ¹	(percent) weld metal (longitudinal)

ASTM A 240/A 240M (incorporated by reference; <i>see</i> §171.7 of this subchapter), Type 304L	70,000	30
ASTM A 240/A 240M (incorporated by reference; <i>see</i> §171.7 of this subchapter), Type 316L	70,000	30

¹Maximum stresses to be used in calculations.

(2)(i) High alloy steels used to fabricate tank must be tested in accordance with the following procedures in ASTM A 262, "Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steel" (IBR, see §171.7 of this subchapter), and must exhibit corrosion rates not exceeding the following: * * *

Test procedures	Material	Corrosion rate i.p.m.
Practice B	Types 304L and 316L	0.0040
Practice C	Type 304L	0.0020

(ii) Type 304L and 316L test specimens must be given a sensitizing treatment prior to testing.

(d) All attachments welded to tank shell must be of approved material which is suitable for welding to the tank.

[Amdt. 179–10, 36 FR 21344, Nov. 6, 1971, as amended by Amdt. 179–32, 48 FR 27707, June 16, 1983; Amdt. 179–47, 58 FR 50237, Sept. 24, 1993; Amdt. 179–52, 61 FR 28679, June 5, 1996; Amdt 179–52, 61 FR 50255, Sept. 25, 1996; 66 FR 45186, Aug. 28, 2001; 67 FR 51660, Aug. 8, 2002; 68 FR 75759, Dec. 31, 2003]